Real number class 10 mcq online test with answer

Practice these MCQ and true-false questions of the real number to check your progress.

Q.1 The exponent of 2 in the prime factorization of 144

(a) 4 

(b) 5

(c) 6


Answer: (a) 

Q.2 If the LCM of a and 18 is 36 and the HCF of a and 18 is 2 ,then a = 

(a) 2 

(b) 3 

(c) 4

(d) 1 


Q.3 For some integer m , every even integer is of the form 

(a) m 

(b) m +1 

(c) 2m 

(d) 2m +1 


Q.4 n² – 1 is divisible by 8, if n is 

(a) an integer 

(b) a natural number 

(c) an odd integer 

(d) an even integer


Q.5 The least number that is divisible by all numbers from 1 to 10 (both inclusive) is 

(a) 10 

(b) 100 

(c) 504 

(d) 2520 


Q.6 If the HCF of 65 and 117 is expressible in the form 65 m -117 ,then the value of m is 

(a) 4 

(b) 2 

(c) 1 

(d) 3 


Q .7 If p and q are co-prime numbers ,then p² and q² are 

(a) co prime 

(b) not coprime 

(c) even 

(d) odd 


Q.8 If two positive integers a and b are expressible in the form a= pq² and b=p³q ; p,q being prime numbers ,then LCM (a,b) is 

(a) pq 

(b) p³q³

(c) p³q²

(d) p²q²


Q.9 The decimal expansion of the rational number \frac{14587}{1250} will terminate after 

(a) One decimal place 

(b) two decimal place

(c) three decimal place 

(d) four decimal place 


Q.10 Euclid’s division lemma states that for two positive integers a and b , there exists unique integers q and r such that a=bq + r , where r must satisfy 

(a) 1 < r < b 

(b) 0 < r ≤ b

(c) 0 ≤ r < b

(d) 0 < r < b


Real number class 10 true / false 

Q.1 The sum of two prime numbers is always a prime number 

(True /False) 

Q.2 π is an irrational number 

(True /False) 

Q.3 The product of two irrational numbers is an irrational number 


Q.4 HCF of two numbers is always a factor of their LCM


Q.5 Two numbers have 12 as their HCF and 350 as their LCM 


True /false answer key 

Answer:1 False

Answer:2 True 

Answer:3 False 

Answer:4 True 

Answer:5 False 

Don’t forget to comment your feedback in the comment section 

Check other stuff as well 

Leave a Comment